Synthesis, Characterization, and Photocatalytic Activities of Nanoparticulate N, S-Codoped TiO2 Having Different Surface-to-Volume Ratios
نویسندگان
چکیده
An efficient, visible light active, N, S-codoped TiO2-based photocatalyst was prepared by reacting thiourea with nanoparticulate anatase TiO2. Commercial anatase powders were manually ground with thiourea and annealed at 400 °C in two crucibles with different surface-to-volume ratios (S/V ) 20 and 1.5) to prepare two N, S-codoped TiO2 materials. The differentiated aeration conditions during the catalyst annealing on the crucibles allowed for different amounts of O2 to reach the catalyst surface. The first material, with S/V ) 20, herein referred to as D-TKP 102-A, was clear beige colored. The second material, with S/V ) 1.5, herein referred to as D-TKP 102-B, was darker and revealed a markedly lower efficiency in Escherichia coli inactivation. The D-TKP 102-A powder presented visible light absorption due to the nitrogen (N) and sulfur (S) doping. X-ray photoelectron spectroscopy signals for this catalyst were observed for N 1s peaks at binding energies of 399.2 and 400.7 eV due to interstitial N-doping or Ti-O-N species. The S 2p were due to SO4 signals with BE >168 eV and signals at 162.8 and 167.2 eV due to anionic and cationic S-doping, respectively. By fast kinetic spectroscopy, the decay of the electron induced by pulsed light at λ ) 450 nm (∼8 ns/laser pulse) was followed for the D-TKP 102-A catalyst. Undoped D-TKP 102 catalyst did not promote the electron in the visible range, and consequently no signal decay could be observed in the latter case. Low-temperature electron spin resonance measurements at 8 K provided evidence for electrons trapped in shallow traps, such as oxygen vacancies, Vo, induced by N, S doped on D-TKP 102-A. The ESR measurements implementing the reactive scavenging with singlet oxygen scavenger, TMP-OH, revealed the production of singlet oxygen (O2).
منابع مشابه
TiO2 Thin Film: Preparation, Characterization, and its Photocatalytic Degradation of Basic Yellow 28 Dye
In this research, the thin films of N-S doped titanium dioxide (TiO2) were successfully prepared by simple sol-gel method in the presence of tetrabutylorthotitanate as a starting reagent. Furthermore, titanium dioxide (TiO2) was functionalized with thiourea. Furthermore, N-S doped titanium dioxides (NSTO) were fixed on glass balls by glass balls fixed-bed reactor system. Besides, the effect of ...
متن کاملMechanochemical Synthesis and Characterization of N-doped TiO2 for Photocatalytic Degradation of Caffeine
The present study reports the synthesis of N-doped TiO2 photocatalyst for the degradation of caffeine using mechanochemical grinding method from the mixture of titania/urea followed by calcination at 400 ⁰C. The phase composition, particle size, surface area, morphology and optical properties...
متن کاملAdsorption-assisted photocatalytic activity of nitrogen and sulfur codoped TiO2 under visible light irradiation.
Applying post thermal treatment on the doped TiO2 at high temperature is mostly regarded as an indispensable process, although it has negative effects on the photocatalytic activity of doped TiO2. Herein, we synthesized the N- and S-codoped TiO2 (NSTs) with an anatase phase using a simple solvothermal treatment and investigated their visible light photocatalytic activity associated with the the...
متن کاملSynthesis, Characterization, and Application of Zr,Ce-TiO2/SiO2 Nanocomposite Thin Film as Visible-light Active Photocatalyst
A novel Zr,Ce-TiO2/SiO2 nanocomposite thin film was successfully prepared with various amounts of Zr4+ and Ce4+ as codopant ions for self-cleaning applications. A thin film was coated on a tile substrate by dip-coating and porous Zr,Ce-TiO2/SiO2 was obtained after heat treatment for 2 hours at 500 °C. The SEM images an...
متن کاملRoom Temperature Synthesis of N-doped Urchin-like Rutile TiO2 Nanostructure With Enhanced Photocatalytic Activity Under Sunlight
We report the synthesis of nitrogen-doped urchin-like rutile TiO2 nanostructure at room temperature without further heat treatment. The process was operated through hydrolysis of Ti(OC4H9)4 employing the direct amination of the product. The samples characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Raman spectroscopy and Brunaue...
متن کامل